Jun 17 2004

Of Thread dumps and stack traces …

Tags: , , , Rajiv @ 10:45 am UTC

Thread dumps and stack traces are probably some of the least understood features of java. Why else would I come across developers who have no clue what do do after looking at an Exception stack trace? 

Street Side Programmer?!

An ex-colleague of mine, Manoj “The Anger” Acharya, had coined the phrase Street Side Programmer [a la Server Side Programmer] and he would dole out this title to all those who would come to him with annoying questions. Nothing annoyed him more than having some one come and ask him I am getting some exception when I do *blah* *blah*. His typical answer *bleep*’ing Street Side Programmers … what is some exception supposed to mean?! Doesn’t it have a name? Doesn’t it have a stack trace??

I was reminded of him the other day, when a trainee learning java came to me saying My program is not running … there seems to be some problem … can you come and take a look?. The kid is quite sweet, so instead of telling him about Anger, I just went to his seat. The command prompt had something like this:

C:\learn\classes>java Test
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 5
        at Test.run(Test.java:11)
        at Test.<init>(Test.java:4)
        at Test.main(Test.java:19)

I wonder if the book he was reading had any section on reading stack traces. [Monsieur Bruce Eckel ... are you listening?!] I really think any introduction to java book should have this as one of the earliest chapters … right after defining a class and method! Some one makes an error while trying out samples, or is tinkering around with the code, which typically results in an exception … what is one supposed to do next?!

Anatomy of a Stack Trace

Well I explained that an exception stack trace is java’s way of telling you exactly what went wrong and where it went wrong. The first line of the stack trace gives you the exception name and the exception message and what follows is the “stack trace”. The stack trace is to be read from top to bottom, line by line. Each line has the name of the class and the name of the method being executed followed by the file name and line number in parentheses. 

In this case a java.lang.ArrayIndexOutOfBoundsException with the message “5” was raised. To know where it was raised, we look at the next line. It tells us that the exception was raised while executing the run method of the Test class at line number 11 in Test.java file. The next line tells us that the run method was called by the constructor [the stack trace shows Constructors as <init> and static blocks in a class as <clinit>] of the Test class at line number 4 in Test.java file. The next line tells us that the constructor was called by the main method of Test class at line number 19 of Test.java file.

So the java stack trace would read in English would be like:

You accessed an array with an index of 5, however the array does not have 6 elements [thanks to zero based index]. This happened when I was executing the run method of Test class which happens to be in line number 11 of Test.java file. The run method was called by the constructor of Test class at line number 4 of Test.java file. The constructor was called by the main method of the Test class at line number 19 of Test.java file. 

Well… there is a wealth of information here. It tells you exactly what the VM was doing when the exception was raised. Let us see how to debug the issue given all this information. The Test.java file looks like this: 

1    public class Test
2    {
3        public Test(int[] nums){
4            run(nums);
5        }
6
7        private void run(int[] nums)
8        {
9            int n = nums.length;
10           for (int i = 0; i < nums.length; i++) {
11               int num = nums[n];
12               System.out.println(num);
13           }
14       }
15
16       public static void main(String argv[])
17               throws Exception
18       {
19           new Test(new int[]{1,3,5,7,9});
20       }
21   } 

Stepping through the code [as per the stack trace], we called the main method, which invoked the constructor at line number 19, which in turn called the run method at line number 4. Hey the stack trace was correct after all! Now we look at line number 11 where the exception was raised. The exception says that we accessed an array with incorrect index. The only array we are accessing at line number 11 is the num array. The index being used to access the array was n. So what the VM is trying to tell you is that the n is larger that the size of the array nums. Which is in fact true. n happens to be the length of the array. So it IS greater than the last index of the array. What the user really wanted to do was use i as the loop index and not n.

Another common exception raised is the java.lang.NullPointerException. The NPE!  A NullPointerException is Java’s way of telling a user that a null object reference was being used. Take a look at the following lines from a stack trace [snipped for brevity]:

java.lang.NullPointerException:
        at foo.bar.MyServlet.doGet(MyServlet.java:36)

So now we know that a null object was being referened at line number 36 of MyServlet.java. The code for the servlet looks something like:

35    String userNameParam = request.getParameter("username");
36    if(userNameParam.equals("root"))
37    {

The only object reference being used in line number 36 happens to be userNameParam. So it was null when the VM was executing that line. Now we track down what values were assigned to the userNameParam. Line number 35 happens to be the only assignment in this case. It assigns the value of userNameParam to request.getParameter("username"). Since the VM told us that the userNameParam was null, it means that the method request.getParameter("username") returned a null value. Looking at the documentation of the method we know that the method may return null. So the users of the method need to code taking that into consideration. In this case we would change the condition like so:  

35    String userNameParam = request.getParameter("username");
36    if(userNameParam!=null && userNameParam.equals("root"))
37    {

Thanks to stack traces some one who is not even aware of the code can pin point the exact location of the error. In most of the cases a stack trace is definitely starting points for debugging erroneous behavior. Who wants messy
core dumps anyways when you have readable stack traces?!

Innovative uses of stack traces

Once you know what a stack trace provides, there are a lot of innovative ways to use it. Basically answer questions like how did I get here or to record the location of an event.

Recently a customer noticed that the VM was performing Full GC’s very frequently. This would happen even when the application is completely idle. Looking at java -verbose:gc -XX:+PrintGCTimeStamps ... , we realized that the Full GC would occur every one minute … on the dot. We then tried adding the -XX:+DisableExplicitGC option and voila no more full GCs! So looks like some one was doing a System.gc somewhere at every one minute.

So how do we find out who is calling it?! You would extract the System.java file from <jdk-home>/src.zip!/java/lang/System.java and edit it like so:

736    public static void gc() {
737	       new Exception("Some one triggered Full GC from here").printStackTrace();
738            Runtime.getRuntime().gc();
739       }
740

Compile the modified file and prepend it to your bootclasspath using the option -Xbootclasspath/p:outputDir. Next time we ran the application, we got the stack trace:

java.lang.Exception: Some one triggered Full GC from here
        at java.lang.System.gc(System.java:737)
	at sun.misc.GC$Daemon.run(GC.java:92)

Adding one more stack trace to GC.java [You will not find sources for the com.sun.* and sun.* packages in the src.zip that comes with your jdk. You will have to download it from Sun's Community Source site.] we get to know that sun.rmi.transport.ObjectTable is triggering the full GC based on an interval specified by the system property sun.rmi.dgc.server.gcInterval. The default value for the property happens to be one minute.

So using the printStackTrace method we could debug where Full GC was being triggered explicitly. You could
ofcourse do the same by setting a method break point for the System.gc method. Or you could be
a smart google’er and stumble upon the “Other considerations” section of the

GC options page!

Instead of doing a new Exception(…).printStackTrace(), you could alternatively do a Thread.dumpStack() which internally does the same. The only disadvantage is that Thread,dumpStack() does take a message as its
parameter.

Some times it makes sense to create an exception object and hold a reference to it until a later point in time. Suppose you have a class which looks like:

1    import java.io.IOException;
2
3    /** 
4     * A class that represents a heavy weight resource. 

5     */
6    public class Resource
7    {
8        private boolean closed;
9
10       public void close() throws IOException{
11           if(closed)
12               throw new IOException("Resource already closed.");
13           //resource cleanup 

14           closed=true;
15       }
16       //code snipped for brevity ...

The class throws an exception when a user invokes close on an already closed resource. The stack trace of the IOException is going to tell you where in the code you tried to close the already closed connection. For example the following output tells you that when you called close on the Resource at line 41 of ResourceTest.java it was already closed.

C:\learn\classes>java ResourceTest
java.io.IOException: Resource already closed.
        at Resource.close(Resource.java:12)
        at ResourceTest.closeResource(ResourceTest.java:37)
        at ResourceTest.run(ResourceTest.java:26)
        at ResourceTest.main(ResourceTest.java:50)

But now what if you want to know where did you close it the first time?! You would change the code like so:

1    import java.io.IOException;
2
3    /** 
4     * A class that represents a heavy weight resource. 
5     */ 

6    public class Resource
7    {
8        private boolean closed;
9
10       private Exception closedAt;
11
12       public void close() throws IOException{
13           if(closed) {
14               closedAt.printStackTrace();
15               throw new IOException("Resource already closed.");
16           }
17           //resource cleanup 

18           closed=true;
19           closedAt=new Exception("Resource closed here the first time.");
20       }
21       //code snipped for brevity ...

The output would after making the changes would look like …

C:\learn\classes>java ResourceTest
java.lang.Exception: Resource closed here the first time.
        at Resource.close(Resource.java:19)
        at ResourceTest.useResource(ResourceTest.java:32)
        at ResourceTest.run(ResourceTest.java:25)
        at ResourceTest.main(ResourceTest.java:50)
java.io.IOException: Resource already closed.
        at Resource.close(Resource.java:15)
        at ResourceTest.closeResource(ResourceTest.java:41)
        at ResourceTest.run(ResourceTest.java:26)
        at ResourceTest.main(ResourceTest.java:50)

So now from the stack traces we know that a close was called first at line 32 of ResourceTest.java and later at line 41 we called a close on the same resource for the second time.

There are a lot of multi threaded problems [NullPointers] which we were not able to debug with a debugger because the whole application would become too slow to simulate the problem scenario. However, by using Exception objects to track threads which were setting the fields to null, we were able to resolve the issues. A word of caution though … creating exception objects is resource intensive. Creating too many exception objects takes lot of CPU. And if you are holding references to all the objects it requires memory too! 

Thread dump 101

If the stack trace which gives the information on what a thread was doing at that moment can help us in so many ways, just imagine the possibilites if you could find out what every single thread in the Java VM is doing at any given moment! A Full Thread Dump or a thread dump for short gives us exactly that information. Consider the following source

1    public class Test
2    {
3        public Test(char[] chars){
4            System.out.println("New line at "+findNewLine(chars));
5        }
6
7        private int findNewLine(char[] chars)
8        {
9            int i = 0;
10           char aChar;
11           do{
12               aChar = chars[i];
13           }while(aChar!='\n');
14           return i;
15       }
16
17       public static void main(String argv[])
18               throws Exception
19       {
20           new Test("Hello World!\nHowz goin?!">.toCharArray());
21       }
22   }

The method findNewLine is supposed to return the first index of a new line character in a given char array. [Purists please don't mail me with the list of reasons why this approach is not right ... the idea here is not really to write the best way to find a new line character!] Now when you run the program it just won’t print the result. One look at top in unix or the task manager in windows we get to know that VM has taken the CPU for a spin…. 100% CPU consumption for ever! Now wouldn’t you want to know what the VM is doing. Why is it taking all this CPU and not printing the output it is supposed. 

One way to do this would be rerun the program in debug mode. Use the debugger and debug the application. However, many a times you come across such the situation on a live system after running the app for a long duration. Since it is a live system and we hit the issue only after running the application for a long duration we can not leave it in debug mode for ever. The first line of defense under such circumstances is the thread dump.

Run the program from the command prompt and when the CPU peaks take a thread dump. You can get a thread dump by pressing the following at the command prompt: Ctrl+\ for unices or Ctrl+Break for windows machines. If you are running your application as a back ground process in unix, you could execute kill -SIGQUIT <pid> from another command prompt. The above signals the VM to generate a full thread dump. Sun’s VM prints the dump on the error stream while IBM’s JDK generates a new file with the thread dump every time you send the signal. In our case the thread dump would look something like this:

C:\learn\classes>java Test
Full thread dump Java HotSpot(TM) Client VM (1.4.2_04-b05 mixed mode):

"Signal Dispatcher" daemon prio=10 tid=0x0091db28 nid=0x744 waiting on condition [0..0]

"Finalizer" daemon prio=9 tid=0x0091ab78 nid=0x73c in Object.wait() [1816f000..1816fd88]
        at java.lang.Object.wait(Native Method)
        - waiting on <0x10010498> (a java.lang.ref.ReferenceQueue$Lock)
        at java.lang.ref.ReferenceQueue.remove(Unknown Source)
        - locked <0x10010498> (a java.lang.ref.ReferenceQueue$Lock)
        at java.lang.ref.ReferenceQueue.remove(Unknown Source)
        at java.lang.ref.Finalizer$FinalizerThread.run(Unknown Source)

"Reference Handler" daemon prio=10 tid=0x009196f0 nid=0x738 in Object.wait() [1812f000..1812fd88]
        at java.lang.Object.wait(Native Method)
        - waiting on <0x10010388> (a java.lang.ref.Reference$Lock)
        at java.lang.Object.wait(Unknown Source)
        at java.lang.ref.Reference$ReferenceHandler.run(Unknown Source)
        - locked <0x10010388> (a java.lang.ref.Reference$Lock)

"main" prio=5 tid=0x00234998 nid=0x4c8 runnable [6f000..6fc3c]
        at Test.findNewLine(Test.java:13)
        at Test.<init>(Test.java:4)
        at Test.main(Test.java:20)

"VM Thread" prio=5 tid=0x00959370 nid=0x6e8 runnable

"VM Periodic Task Thread" prio=10 tid=0x0023e718 nid=0x74c waiting on condition
"Suspend Checker Thread" prio=10 tid=0x0091cd58 nid=0x740 runnable

The thread dump generated here is on Sun’s JDK 1.4.2. Though the output differs from version to version and from vendor to vendor, the basic structure is the same. The output is somewhat like going over all the threads and doing a Thread.dumpStack in each of them. In this case we can see that, at the time we took the thread dump, there were seven threads:

  1. Signal Dispatcher
  2. Finalizer
  3. Reference Handler
  4. main
  5. VM Thread
  6. VM Periodic Task Thread
  7. Suspend Checker Thread 

Each thread name is followed by whether the thread is a daemon thread or not. Then comes prio the priority of the thread [ex: prio=5]. I am not sure what the tid and nid are. My best guess is that they are the Java thread id and the native thread id. Would love if someone could comment on that. Then what follows the state of the thread. It is either:

  • Runnable [marked as R in some VMs]: This state indicates that the thread
    is either running currently or is ready to run the next time the OS thread
    scheduler schedules it. 
  • Suspended [marked as S in some VMs]: I presume this indicates that the
    thread is not in a runnable state. Can some one please confirm?!
  • Object.wait() [marked as CW in some VMs]: indicates that the thread is
    waiting on an object using Object.wait()
  • waiting for monitor entry [marked as MW in some VMs]: indicates that the
    thread is waiting to enter a synchronized block

What follows the thread description line is a regular stack trace. 

Debugging run away CPU

When we are trying to debug a run away CPU, as in this case, what we need to look at is the set of Runnable threads  in the thread dump. The question to ask is: What was the thread which was consuming CPU doing? At the instant we took the above thread dump, the thread was at line 13 of Test.java. Well … looks like it was checking the condition for the while loop. But eventually it should have returned right?! So we take a few more thread dumps. Each time it shows us the thread is within the while loop. This definitely indicates from the first time you took a dump to the last time you took a dump, the thread never got out of the loop. The problem is narrowed down that loop. Putting the loop under the magnifying glass, we realize that the counter i was never being incremented. 

Well … if you have a single class in your application it is no big deal! But when you have gazillions of classes, narrowing down the problem to a single loop within single class is a big saver! I have found this a useful tool even when I am using a debugger. It helps me choose a good location to set my first break point! 

Debugging performance issues

Its the night before the release and your application is not performing good enough. You really don’t have enough time to run the app through a profiler. Take heart! Like Ramesh says … there are always some low hanging fruits! The way a java profiler works is, it takes snapshots of what the CPU was doing at frequent intervals and generates a statistical report on where most of the CPU time was being spent during the run. If your application is performing so poorly that you could take say 10-12 thread dumps before an operation completes, you would get a rough idea of distribution of CPU time. Some of the easy kills I can think of:

  • Symptom: High CPU consumption and poor response time

    Thread dump profile: Most of the dumps show the same thread in the same method or same class

    Solution: The method/class is the one which is definitely taking a lot of CPU. See if you can optimize these calls. Some of the REALLY easy kills we have had in this category is using a Collection.remove(Object) where the backend collection is a List. Change the backed collection to be a HashSet. A word of caution though: There have been times when the runnable threads are innocent and the GC is the one consuming the CPU.
  • Symptom: Low CPU consumption most of which is kernel time and poor response time

    Thread dump profile: Most thread dumps have the runnable threads performing some IO operations

    Solution: Most likely your application is IO bound. If you are reading a lot of files from the disc, see if you can implement Producer-Consumer pattern. The Producer can perform the IO operations and Consumers do the processing on the data which has been read by the producer. If you notice that most IO operations are from the data base driver, see if you can reduce the number of queries to the database or see if you can cache the results of the query locally.
  • Symptom: Medium/Low CPU consumption in a highly multithreaded application

    Thread dump profile: Most threads in most thread dumps are waiting for a monitor on same object

    Solution: The thread dump profile says it all. See if you can: eliminate the need for synchronization [using ThreadLocal/Session-scopeobjects] or reduce the amount of code being executed within the synchronized block.
  • Symptom: Medium/Low CPU consumption in a highly multithreaded application

    Thread dump profile: Most threads in most thread dumps are waiting for a resource

    Solution: If all the threads are choked for resources, say waiting on the pool to create EJB-bean objects/DB Connection objects, see if you can increase the pool size.

Debugging “hang” problems

A textbook case of deadlock is the easiest to debug with the newer JDKs. At the end of the thread dump you will find something like this:

Found one Java-level deadlock:
=============================
"Thread-1":
  waiting to lock monitor 0x0091a27c (object 0x140fa790, a java.lang.Class),
  which is held by "Thread-0"

"Thread-0":
  waiting to lock monitor 0x0091a25c (object 0x14026800, a java.lang.Class),
  which is held by "Thread-1"

Java stack information for the threads listed above:
===================================================
"Thread-1":
        at Deadlock$2.run(Deadlock.java:48)
        - waiting to lock <0x140fa790> (a java.lang.Class)
        - locked <0x14026800> (a java.lang.Class)
"Thread-0":
        at Deadlock$1.run(Deadlock.java:33)
        - waiting to lock <0x14026800> (a java.lang.Class)
        - locked <0x140fa790> (a java.lang.Class)

Found 1 deadlock.

But many a times we come across hang’s which are not deadlocks. One thing that easily comes to my mind is a resource limit. For example in an EJB container you have set the maximum bean pool size to 1000. Now say two threads have started executing a finder each returning a collection of 1000 odd beans. Assuming a decent CPU time slice distribution it could happen that the first thread iterates over 500 beans and the next thread iterates over the 500 beans. At this moment both the threads need more beans to proceed further. However the container will not create new beans as the bean pool limit has been reached. So both the threads wait for some beans to be release to the pool … which is not going to happen. We have a hung app here…. however it is not a java-level deadlock. It is an artificial deadlock introduced due to resource limitation.

When your app is not responding and your CPU consumption is 0%, take a thread dump. If it does not have a java level dead lock, then take multiple thread dumps. If all of them show that the threads are waiting for resources [EJBs or DBConnections] see if you can increase the pool limit or decrease the number of resources required within a transaction. 

Finally

Thread Dumps and stackTraces are really good tools … they may not replace a debugging/profiling tools but are definitely good starting points and huge time savers. Unfortunately, I think they are undersold. Classes don’t teach you about them, Books don’t talk about them and tools don’t support them. I mean I can run any class from my IDE. I has buttons to Start/Pause and Stop the app from within the IDE. But why can’t I have a button for “Generate full Thread dump”. Every time I need to generate a thread dump, I have to rerun the application from
command line.

Well … maybe things are not so bad after all. What if the IDEs don’t support generation of a thread dump?! Most of them now open up the file and line number if you double click on a line in the exception stack trace obtained on runninga program! And what if the books don’t talk about it? People like Ashman make sure anyone joining the support team gets their dope on thread dump from me! ;)

Share:
  • email
  • del.icio.us
  • DZone
  • Technorati
  • Reddit
  • Ma.gnolia
  • Google Bookmarks
  • YahooMyWeb
  • SphereIt
  • StumbleUpon
  • Digg
  • Mixx
  • TwitThis
  • Furl
  • Simpy

One trackback

  1. N-Puzzle Help! - Java Forums says:

    [...] exception at the end of A* method right before it back tracks?? How to read a stacktrace: 0xCAFEFEED Of Thread dumps and stack traces … Also I notice you’re using visual studio. Microsoft Java, succinctly sucks… MS Don’t want to [...]

33 comments

  1. Moazam


    Good article, I’ll print it out and read it in more detail later today.

    As for TID and NID, read my small writeup here:

    Debugging thread related hangs in the JVMBasically, nid correlates to the LWP id in Solaris.

    -Moazam

  2. Alexandre Rafalovitch


    Great article. I will be using it as a troubleshooting reference for the support cases I work on.

    Just some further references on working with thread dumps. There is a couple of utilities available that make it easier. You still have to know what you are looking at.

    1) TDan – Thread Dump Analyzer Article and Tool

    2) SamuraiThere is also a couple of articles and presentations:

    3) Tracing Threads for BEA JRockit4)Troubleshooting Complex application servers – JavaONE 2004 presentation TS-1646)

    Regards,
    Alexandre Rafalovitch

  3. Calvin Austin


    Stack traces are unglamorous which is why you don’t see
    that many article about them. See my old article below

    http://java.sun.com/developer/onlineTraining/Programming/JDCBook/stack.html

    The good news is that 1.5 brings even more tools, Its one area I wanted us to improve this time around) for example the programmatic
    stack trace api and the new debug connectors for the hotspot jvm


  4. rajiv


    Hey calvin,

    This is great news! I did a quick search for j2se features and found a link to what you were talking at:
    http://java.sun.com/j2se/1.5.0/docs/relnotes/features.html#threads

    I always wanted some API to trigger a thread dump … and getting allStackTraces seems just perfect. We will no longer have to teach the user to take thread dumps. All he will need to do is press a button in the admin console!

    This is just what we needed!

  5. Anonymous


    You should really put out your name and some contact (even if not email) details. With such good stuff, helps to know who is writing this!

  6. Anonymous


    Who are you? Where did you suddenly crop up from with such heavy posts?


  7. Mariusz


    I just want to thank you for the article. Currently I am fighting with “deadlocks” in my Swing application. The things you wrote will be very helpful. Now I know how to start reading thread dump. Once again thank you.

    Regards

    Mariusz
    syllepsa@wp.pl

  8. Anonymous


    The IDE IntelliJ has the feature to push a button and dump the thread stack. This is a very powerful feature for debugging.

  9. Anonymous


    A great article, which I find, is a must for each Java developer!!! Many Thanks.

  10. Krish Chaitanya Raghav


    Hey,
    I had to thank and recognise the use of ur article. I had no clue of thread dumps before this, now I have one.

    Thanks and write more of these.

  11. Anonymous


    Hi Rajiv,

    This is a fundoo article.
    Hope you will write more such stuff regularly

    Sampath

  12. Anonymous


    Though I am a C++ guy but I found this article very usefull.I really want to know about the person and expect more such articles in future!!!

    Apoorv

  13. Anonymous


    this ia very good article! can u recommend more related and detailed article like this?

  14. Anonymous


    Very good article. I was dreading to read a Thread dump and now after reading some basics it makes me feel a little comfy.

    Thanks!

  15. shivanandh karthik


    Hi really good and useful informations in this article.
    I thank the person who has written this and also request him to provide many more work like this.

  16. Saurabh


    Excellent Article!

    I have learnt alot from this.

    Thank you!

    Saurabh

  17. Francisco


    Great article , written in a way to make it very simple to understand

  18. pradeepjindal


    good article and original effort, i knew stack trace but learn about thread dump, would appriciate more stuff on jvm side, links also welcomed. i would like to recommend an excellent book “cowert java” as a must read

  19. Anonymous


    Excellent Article. I learnt what I wanted to learn. Thank you for sharing.

  20. Vishwanath


    Excellent One !!

    Thanks a lot for this article!!

    Vishwanath

  21. Anonymous


    I found a very good free tool from IBM to analyze thread dumps. It is called IBM Thread and Monitor Dump analyzer and can be downloaded from

    http://www.alphaworks.ibm.com/tech/jca

  22. KB


    Thank you so much for your article. Even thought I didn’t figure out what is causing hung threads in my application, I really learned a lot about how to read a thread dump and what to look for. Such a good article and in such a simple language. keep up the good work.
    - KB


  23. Sony Tomas


    Hi Rajiv,
    This is a very good article. Thank you very much.


  24. sync


    Awesome!


  25. lipu panda


    nice article …post some more interesting articles about java…


  26. John Burgoon


    Thanks for the article.


  27. Thay


    Hey..good article…its the perfect amount of information for someone who doesn’t need every minor detail.
    Thank You


  28. Mario


    This is a very interesting article.

    Really took the fear away from debugging Thread dumps.


  29. Manoj


    gr8 article… Now, I am feeling comfortable with java stack error and thread dump. thnx


  30. Santosh


    It was the one of the best docs on reading the stack. i used to used to go crazy seeing stack exceptions on our websphere logs .

    It has really helped me in building up the foundation


  31. Chithrakumar


    I’m working as a Java/Java EE trainer for past 2 and half year. But i never seen any kind of word like Thread dump in any book, by the there is no need to teach this to the students. Last week i attended an interview they asked a question about Thread Dump. After that searching for Thread Dump i got this page. This is really simple and very easy to understand.. Thank You for this article…


  32. Tynisha Panama


    There is apparently a lot for me to ascertain outside of my books. Thanks for the fantastic read,


  33. sandeep


    i am getting this problem while running my program

    how to solve this problem

    javax.comm.NoSuchPortException
    at javax.comm.CommPortIdentifier.getPortIdentifier(CommPortIdentifier.ja
    va:105)
    at SerialConnection.openConnection(SerialConnection.java:70)
    at Sender.send(Sender.java:44)
    at SMSClient.run(SMSClient.java:39)
    at java.lang.Thread.run(Unknown Source)
    java.lang.NullPointerException
    at SerialConnection.openConnection(SerialConnection.java:87)
    at Sender.send(Sender.java:44)
    at SMSClient.run(SMSClient.java:39)
    at java.lang.Thread.run(Unknown Source)

    can anybody solve my problem
    then mail me at above e-mail address

Leave a Reply

Subscribe to comments on this post

Allowed tags: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>